Introduction to Fully Automated Application Performance Analysis

by iIPerformance

WWW.giapa.com

Automatically generated optimization hints for:
* Programs
* Access of data bases

http://www.giapa.com/

Output Generated : Overview of Potential Savings Found

GiaPA (c) by Statistics from Automated Application Performance Analysj 21-83-38
iPerformance Library GLAPAUTILI Member EXAMPLES 13:55:38
21,538 data cocllection intervals processed = data from 3 days 17 hours 45 minutes Scurce machine specifications:
14-83-82 5:45 date and time for first data included in analysis (YY-MM-DD hh:mm}) GiAPA wversion Vasyvea
14-88-865 ©:80 date and time for last data included in analysis (YY-MM-DD hh:mm}) System name MATINSERW
183,715,178 job and task records receiwved from Performance Collector API Serial number F81K22C
37,982,572 showed rescurce usage --»> record generated Processor type EPAL
1,147,656 different jobs and tasks found in API data Model & Server ESBE
893,589 HotSpots detected (Job exceeded interval limits) Price group P2a
951,496 program call stacks retriewved Op.System wversion W7R1ME
18,357,238 program names processed LPAR number 821
72,473,827 open file data records processed Number of LPARs 3
Nbr of Phys. CPUs 18
Procesor capacity 18.e8
PVU per processor 1ae
Potential Sawvings Found F i Available memory M 457,179,136
Auxiliary storage 45,897,128
Improvements Program Functions M System ASP Gb 34,812,316
System ASP use pct 72.8458

Improvements File Access Method

" Total Potential Run Time Savings 46 Hours 44 Minutes

Request trial installation and get this overview of savings possible plus
one free example (please see next slides) based data from your productions server.
For a detailed description of a Free Trial please use this link:

https://www.giapa.com/GiAPA_FreeTrial.pdf

Example of Optimization Hint for a Program

System: MAINSERV

by iPerformance 7B1X22C LPAR 021

95.3 hours of data collected starting 2021-01-29 at 00:01

Program used RWONMN/OMENPDHPZ Calculate interest for outstanding invoices
Hours Runtime

Statement number 46900

GiAPA detected Date/time conversion or calculation found in 3907 HotSpots

Job and user UBSTWABZY4 KVKZKDV (4 jobs)
UBSTVABZY7 KVKZKDV (4 jobs)

Estimated saving 85 % of DATETIME = 830 minutes run time

Effort required Probably < 7 hours programmer time (test not included)

0

Curr pgm total Memary table
DateTimeProcess Estimated saving

The process needed for date/time format conversions or calculations is rather CPU intensive

Date/Time conversions, and calculations on date and time fields may be convenient to use, but are rather CPU intensive functions. An example is interest
calculation starting with finding the number of days between two dates. If this is done for each record in a batch run, the date field calculation may be
responsible for around half the CPU time used by the program. Most often such routines calculate the days elapsed between an older date and today's date,
in which case the results of the calculations can be stored in an array using the older date as key. Subsequent date calculations can then be replaced by
much faster binary table look-ups in the array.

Print all pages| |Print page

Data collection uses less than 0.1 % CPU. The results are produced 100 % automatically.
All jobs are analyzed, and only programs with optimization potential are reported.

Example of Optimization Hint for Accessing a Data Base

System: MAINSERV

. o 781X22C LPAR 021
by iPerformance .
05.3 hours of data collected starting 2021-01-29 at 00:01

File accessed QOTEMP/FEWXENMP Transactions ready for main update run
Hours Rumntime

Records in file 50,513,446 (Estimate based on records accessed)

GIAPA detected 1,765,955,117 unblocked writes of records found in 4,625 HotSpots

Job and user HSLAR KVKZKDV (117 jobs)
HSLAX HAHXDYM (2 jobs)
HSLI] KVKZKDV (6 jobs)
(Maore job info shown by GiAPA Menu option 19, sel. 2)

Estimated saving 524 minutes run time (mainly CPU time)
15

Effort required Probably < 4 man-hours (test time not included)
Unblocked Blocked Estimated
writes writes saving

Writing records/rows one by one is inefficient. & change to use blocking would save most of the time used by these writes,

When QDBPUT occurs as the active program in many GiAPA HotSpots it should always be considered if the much more performance efficient blocked
writes could be used. If the program logic does not necessitate forcing the records to be added to the file immediately, CL statements may be used to
request blocking (please refer to GIAPA Tutorial 14, slides 4, 6, 7 and 9 for more details). Data base management will in some cases not automatically
use blocked writes, e.g. if access path{s) with unique keys are defined for the data. However, if user program logic assures that duplicate key values
are avoided, blocking can be forced through use of CL OVRDBF statement. Blocking could cut over 80 % of the time used for writing the records.

| Print all pages | [Print page|

For more details please check https: .giapa. roduct-intro/giapa-video-4-minutes
iapa.com/GiAPA2021Presentation%20(Published

https://www.giapa.com/product-intro/giapa-video-4-minutes
https://www.giapa.com/GiAPA2021Presentation%20(Published)/

